J. Che.

The synthesis of α -hydroxyphosphonates mediated by microwave irradiation under solvent-free conditions[†]

Babak Kaboudin* and Rahman Nazari

Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan, 45195-159, Iran

Microwave-assisted hydrophosphonylation of aldehydes under solvent-free conditions was found to be an efficient method for the preparation of α -hydroxyphosphonates; the method was reliable, efficient and high yielding.

Keywords: α-hydroxyphosphonates, aldehydes, solvent-free conditions

In recent years, considerable interest has been focused on the synthesis of phosphonic acids, particularly the α -substituted analogues that are an important class of compounds1 with applications as antibiotics, antiviral agents and enzyme inhibitors.² Among the α -functionalised phosphonic acids, α -hydroxyphosphonic acid derivatives are gaining in interest in medicinal chemistry. It is well known that α -hydroxyphosphonates and phosphonic acids inhibit enzymes such as renin,³ EPSP synthase,⁴ HIV protease,⁵ and more recently PTPases.⁶ Moreover, other biologically significant α substituted phosphonates and phosphonic acids are readily obtainable starting with α -hydroxyphosphonates.⁷ Bioactive γ -aminophosphonic acids as well as γ -substituted vinyl phosphonates and phosphonic acids can also be obtained from α -hydroxyphosphonates.⁸ The base-catalysed allvlic hydrophosphonylation of aldehydes (the Pudovik reaction) is one of the most versatile methods for the preparation of α hydroxyphosphonates.^{9a,b} Synthesis of organic compounds in heterogeneous media is of growing interest because of the ease of set-up and work-up, mild reaction conditions, rate of the reaction, selectivity, high yield, lack of solvent and the low cost of the reaction in comparison with other homogeneous counterparts.¹⁰ The application of microwave energy (MW) to accelerate organic reactions is of increasing interest and offers several advantages over conventional techniques.¹¹ Synthesis of molecules, which normally require a long time, can be achieved conveniently and very rapidly in a microwave oven. To our knowledge, there is no report in the literature on the synthesis of α -hydroxyphosphonates under solvent-free condition assisted by microwaves. As a part of our efforts to explore the utility of solvent-free conditions for the synthesis of organophosphorus compounds,^{12–15} we describe here a new method for the preparation of α -hydroxyphosphonates. It is found that CaO or Na₂CO₃ under solvent-free conditions is capable producing high yields of α -hydroxyphosphonates from the reaction of diethyl phosphite with aldehydes (Scheme 1, Table 1).

As shown in Table 1, aliphatic aldehydes in the presence of CaO or Na₂CO₃ reacted with diethyl phosphite, to give the required products in excellent yields (**2a**, **2b**). The reaction also proceeded in good yields for substituted benzaldehyde (**2c–2i**). The cinnemaldehyde, as an α , β -unsaturated aldehyde and α -naphthyl carbaldehyde as a polynuclear aromatic aldehyde also afforded the α -hydroxyphosphonates in excellent yields (**2j**, **2k**).

In summary, a simple work-up, low consumption of solvent, fast reaction rates, mild reaction conditions, good yields and relative cleanliness with no tar formation in the reaction make this method an attractive and a useful contribution to present methodologies. Indeed, a wide range of aldehydes (enolisable and non-enolisable) was converted into corresponding α hydroxyphosphonates using this method.

Table 1 The preparation of α -hydroxyphosphonates (2) under solvent-free condition using microwave irradiation

Product (2)	R-	Time /min	Yieldª /%	Yield ^ь /%
a	CH ₃ CH ₂ CH ₂ -	2	92	90
b	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -	2	98	95
C	C ₆ H ₅ -	2	75	70
d	<i>p</i> -CH ₃ C ₆ H ₄ -	2	65	65
е	m-CH ₃ OC ₆ H₄-	2	65	65
f	p-CIC ₆ H ₄ -	2	70	70
g	m-NO ₂ C ₆ H ₄ -	1	72	70
ĥ	$p-NO_2C_6H_4$	48°	75	75
i	$p_{-} (C\bar{H}_3)_2 C\bar{H}C_6 H_4$ -	4	79	75
j	C ₆ H ₅ -CH=CH-	2	85	82
k	α-C ₁₀ H ₇ -	2	90	88

alsolated yields in Na₂CO₃.

^blsolated yields in CaO.

^cReaction time based on seconds.

Experimental

General: All chemicals were commercial products and distilled or recrystallised before use. All melting points were obtained by a Buchi 510 and are uncorrected. A commercially available pulse microwave at 2450 MHz (900 W) was used in all experiments. The infrared (IR) spectra were determined neat using an FTIR. ¹H NMR (at 500 MHz) spectra were obtained as solutions in deuteriochloroform (CDCl₃).

In a typical case, benzaldehyde (0.53 g, 5 mmol), diethyl phosphite (0.83 g, 6 mmol) and Na₂CO₃ or CaO (1 g.) were mixed together in a flask and irradiated for 2 minutes (irradiation stopped and the reaction was monitored by TLC). The reaction mixture was allowed to cool (5 minutes), washed with dichloromethane and the solvent was then removed *in vacuo* to give the crude product. Purification of the residue by crystallisation from CH₂Cl₂/*n*-hexane gave the diethyl α -hydroxyphenylmethylphosphonate (**2c**), in 75% (Na₂CO₃) and 70% (CaO) yields.

All products gave satisfactory spectral data in accord with the assigned structures.^{12, 16} For **2j** as an example: White crystals (82%);

^{*} To receive any correspondence. E-mail: kaboudin@iasbs.ac.ir

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

m.p = 105–106°C (*n*-hexane/CH₂Cl₂) [lit¹⁷, m.p. 106.5–107°C]; ¹H-NMR (CDCl₃/TMS): 1.15 (3H, t, J = 7.1 Hz), 1.28 (3H, t, J = 7.1), 3.94 (1H, ddq, J = 7.1, 11.2, 8.1 Hz), 4.09(1H, ddq, J = 7.1, 8.1, 11.2 Hz), 4.18 (2H, m), 4.3 (1H, br, OH), 4.4 (1H, dd, $J_{\rm HP}$ = 18, $J_{\rm HH}$ = 6 Hz), 6.08 (1H, dd, J = 6, 16 Hz), 6.4 (1H, d, J = 16), 6.9–7.4 (5H, m); ³¹P-NMR (CDCl₃/H₃PO₄): 19.49; IR (KBr): 3250 (-OH), 1230 (P = O), 1045 (P-O-Et) cm⁻¹.

We thank the Institute for Advanced Studies in Basic Sciences (IASBS) for support of this work.

Received 5 June 2001; accepted 29 December 2001 Paper 01/909

References

- 1 For leading ref. see *The Role of Phosphonates in living systems*, ed. R.L. Hildebrand, CRC Press, Boca Raton, Fl., 1983. R. Engel, in *Organic Reactions*, Vol. 36, p. 175, John Wiley & Sons, New York, 1988. M.G. Kosolapoff, in *Organic Reactions*, Vol. 6, p. 273, John Wiley & Sons, New York, 1951.
- 2 (a) P. Kafarski, B. Lejezak and P. Mastalerz, *Phosphonopeptides Synthesis and Biological activity. Beitr. Wirkstofforsch*, 1985, Vol. 25, and references cited therein; (b) J.C-L. Wang, L.T. Taylor, J.A. Mical, S. Spitz and T. Reilly, *Tetrahedron Lett.* 1992, **33**, 7667; (c) C. Yuan and S. Chen, *Synthesis* 1992, 1124; (d) A. Peyman, K-H., Budt, J. Spanig, B. Stowasser and D. Ruppert, *Tetrahedron Lett.* 1992, **33**, 4549; (e) M. Soroka, *Liebigs Ann. Chem.* 1990, 331; (f) P. Bartlett and P.P. Giannousis, *J. Med. Chem.* 1987, **30**, 1603.
- 3 (a) D.V. Patel, K. Rielly-Gauvin and D.E. Ryono, *Tetraheron Lett.* 1990, **31**, 5587; (b) D.V. Patel, K. Rially-gauvin and D.E. Ryono, *Tetrahedron Lett.* 1990, **31**, 5591.
- 4 J.A. Sikorski, M.J. Miller, D.S. Braccolino D.G. Clearly, S.D. Corey, J.L. Font, K.J. Gruys, C.Y. Han, K.C. Lin,

P.D. Pansegrad, J.E. Ream, D. Schnur, A. Shah and M.C. Walker, *Phosphorus, sulfur and silicon*, 1993, **76**, 115.

- 5 B. Stowasser, K-H. Budt, L. Jian-Qi, A. Peyman and D. Ruppert, *Tetrahedron Lett.* 1989, **33**, 6625.
- 6 T.R. Burke Jr., Z.-H. Li, J.B. Bolen and V.E. Marquez, J. Med. Chem., 1991, 34, 1577.
- 7 F. Hammerschmidt and H. Vollenkle, *Liebigs Ann. Chem.* 1989, 577; T. Yokomatsu and S. Shibuya, *Tetrahedron: Asymmetry*, 1992, **3**, 377; P. G. Baraldi, M. Guarneri, F. Moroder, G.P. Pollini and D. Simoni, *Synthesis* 1982, 653; L. Maier, *Phosphorus*, *Sulfur Silicon Relat. Elem.* 1993, **76**, 379.
- 8 E. Ohler and S. Kotzinger, *Synthesis* 1993, 497–502 and references cited terein. For a review see: P. Kafarski, B. Lejczak, *Phosphorus, Sulfur Silicon Relat. Elem.* 1991, **63**, 193.
- 9 (a) A.N. Pudovik, *Dokl. Akad. Nauk SSSR* 1950, 73, 499; *C. A.* 1951, 45, 2856. b) V.J. Blazis, K.J. Koeller and C.D. Spilling, *Tetrahedron: Asymmetry*, 1994, 5, 499 and references therein.
- (a) A. Fadel, R. Yefash and J. Saluan, Synthesis, 1987, 37;
 (b) G. Rosini, R. Galarini, E. Marotta and R. Righi, J. Org. Chem., 1990, 55, 781;
 (c) M. Kodomari, T. Sakamoto and S. Yoshitomi, J. Chem. Soc. Chem. Cummun. 1990, 701;
 (d) P.J. Kropp, K.A. Daus, S.D. Crawford, M.W. Tubergren, K.D. Kepler, S.L. Craig and V.P. Vilson, J. Am. Chem. Soc. 1990, 112, 7433;
 (e) G. Hondrogiannis, R.M. Pagni, G.W. Kabalka, P. Anisoki and R. Kurt, Tetrahedron Lett., 1991, 32, 5433;
 (e) K.H. Pantney, Tetrahedron Lett., 1991, 32, 2259;
 (f) F. Pauter and M. Daudon, Tetrahedron Lett., 1991, 32, 1457.
- 11 S. Caddick, Tetrehedron, 1995, 51, 10403.
- 12 A.R. Sardarian and B. Kaboudin, Synth. Commun., 1997, 27, 543.
- 13 A.R. Sardarian and B. Kaboudin, Tetrahedron Lett., 1997, 38, 2543.
- 14 B. Kaboudin, J. Chem. Res., 1999, 402.
- 15 B. Kaboudin, Tetrahedron Lett., 2000, 41, 3171.
- 16 T. Yokomatsu, T. Yamagishi and S. Shibuya, *Tetrahedron Asymmetry*, 1993, 4, 1783.
- 17 M.S. Kharash, R.A. Mosher and I.S. Bengelsdorf, J. Org. Chem., 1960, 25, 1000.